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Executive Summary

We describe work in progress for sampling a regular
density field from a distribution of particle positions using a
Voronoi tessellation as an intermediate data model.

Key ldeas

Convert discrete particle data into continuous function that
can be interpolated, differentiated, interpolated, represented
as a regular grid (field)

Automatically adaptive window size and shape

Comparison with CIC and SPH using synthetic and actual data

Voronoi tessellation and density estimation computed in
parallel on distributed-memory HPC machines

Application to gravitational lensing




Preliminaries




Estimation Kernels

SPH TESS

CIC
Variable size and shape

Fixed size and shape Variable size and fixed shape
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In tessellation (TESS) methods,
particles are distributed to a
variable number of grid points
according to the Voronoi or
Delaunay tessellation that has
variable size and shape cells.
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In cloud-in-cell (CIC) methods, In smoothed particle

hydrodynamics (SPH) methods,
particles are distributed to a
variable number of grid points
according to a variable size and
fixed shape smoothing kernel.

particles are distributed to a
fixed number of grid points.




Cloud in Cell (CIC)

The mass of point P is
distributed among nearest
grid points G, — G..

The volume of of the grid
cube with corners G, — G,

v(Gq , Gy) is normalized to
1.0

The mass assigned to grid
point G; is
m(G) = 1.0 - v(G,, P)




Smoothed Particle Hydrodynamics (SPH)

kernel WAr)

Size of kernel is determined
by particle density, not by
grid spacing (eg. radius of n
particles)

particle of
E S

n is a parameter that must still
be determined a priori

Kernel W(r) also must be
specified, eg. Gaussian

Shape is symmetrical, eg.

spherical neighbour

particle




Tessellation (TESS)

Parameter free: no fixed
window size determined by
grid or number of particles

Kernel free: no smoothing
kernel

Shape free: asymmetrical, no
window or kernel shape

Automatically adaptive

PO is a particle whose Voronoi cell covers several grid points. Its
mass is uniformly distributed (zero-order estimation) to those
grid points. Pl is a small cell that covers no grid points. Its mass is

assigned to the nearest grid point.




Tess Library Pt

Tess is our parallel library for large-scale CosmoTools In Situ Analysis Tools
distributed-memory Voronoi and Tess
Delaunay tessellation. (CIC++)

Strong Scaling QhuII DIY
(€) (C++ with C interface)
102473 particles

512°3
25673 \ MPI
1283
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Voronoi
blocks

I T I I
256 512 1024 2048 4096 8192 16384 parallel read

Number of Processes

Dense, our density estimator, currently reads the
tessellation from disk and estimates density onto a
regular grid. Eventually dense will be converted to a
library that can be coupled in memory to tess
output, saving the tessellation storage.

Postprocessing Cosmo Tools Plugin

ParaView




DIY Library

Applications

Features

-Parallel I/O to/from storage

: i Benefits
-Domain decomposition

-Enable large-scale data-parallel : : .
analysis on all HPC machines Information entropy

-Network communication

-Written in C++, with C-styl s - Lo
yvritte CH+ with Cstyle bl vide internode scalable data  Particle tracingin
bindings, can be called from thermal hydraulics

Fortran, C. C++ movement
-Autoconf build system
-Lightweight: libdiy.a 800KB
-Maintainable: ~I5K LOC

-MPI + openmp hybrid parallel
model

in astrophysics

B

-Analysis applications can be
custom

-Reuse core components

Computational
geometry in
cosmology

Topology in
combustion

Simulation Visualization Tool
Flash, Nek5000, HACC ParaView, Vislt
[ [
Analysis Library
ITL, Osuflow, Qhull, VTK
I
DIY
|

MPI

DIY usage and library organization







Overall Algorithm

4. Optiona
to 2D

for (all Voronoi cells) {
compute grid points in cell bounding box

compute Voronoi cell interior grid points from
grid points in cell bounding box

for (all interior grid points) {

if (grid point is in bounds of local block)
add mass contribution to grid point

else
send mass contribution to neighboring block
containing grid point and add it there

if (no grid points in interior of Voronoi cell)
add mass contribution to single nearest
grid point

if (2D projection) {

accumulate mass at 2D pixel
divide by pixel area for 2D density

}

else
divide by voxel volume for 3D density

} /] interior grid points

} I/ Voronoi cells




Complexity and Optimizations

Naive algorithm to find interior
grid points of each Voronoi cell
(polyhedron) is O(n3). Triple
nested loop

for all z, {

for all y {
for all x {
scan line search for border

n is size of grid in one dimension
since bounding boxes tessellate
the grid (plus some overlap in
cell bounds)

Limit grid point search:

* Limit x scans: don’t need to find
interior, only cell boundary
crossings, and can use previous
scan boundary crossings as
starting points for next scan

*Limit y scans: use y limits at
previous z as starting y
coordinates of next set of scans
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Optimizations

Time Complexity In Number of Interior Evaluations

—&— Maive
—&— |mprovement 1
—t+— |mprovements 1, 2

I
256

N (Grid Size per Side)

Time complexity as a function of number of
interior evaluations for different grid sizes

Total Time (s)

200.0 500.0

Time Complexity in Total Run Time

—&— Naive
—f—  |mprovement 1
—+— Improvements 1, 2

M (Grid Size per Side)

Run time for naive and improved algorithms is
bounded by number of interior evaluations




Tess Strong
Scaling

12873 synthetic
particles

End-to-end time
and component
times shown

60% strong scaling
excluding /O

12843 Particles Strong Scaling w/ Qhull

—&— Total

—&— Prelim+Exchange
—*— Final Cells

w7 /O
= Perfect scaling

I I
128 /2

Mumber of Processes




Dense Str‘ong 12873 Particles Scalability

and Weak
Scaling 81923 grid

4096"3 grid
20483 grid
10243 grid

. Perfect strong scaling ™
A d g9 <
1283 synthetlc -+ Perfect weak scaling
particles

End-to-end time
(including reading
tessellation and
writing image)

3D->2D projection

51% strong scaling
(End-to-end) for
4096”3 grid

256 212 1024 2045

Mumber of Processes




Accuracy




Navarro-Frenk-White (NFWV)

Our first synthetic dataset is derived from an analytical density function commonly

used in cosmology.
NFW

k is a constant, | for us

1

10.0 200

© (r) is Monte Carlo
sampled to get test set of
particles

1

5.0

2.0

1.0

Ground truth is 2D plot of
p (1)

0.5

We limit r to [-1.5, |.5] and
NFW(r) to 108




NFW 2D Density Fields

Analytical TESS

10243 3D density projected
to 10242 2D density field

and rendered in ParaView

Bottom row:
Ratio of analytical divided
by estimated density




2D Density

TESS

Comparison between analytical 2D
density and estimated density at
y = 0 cross section

Ratio of Analytical / Estimated Density

Y = 0 Slice of Ratio of Analytical / Estimated Density

Y = 0 Slice of Analytical and Estimated Density

Analytical

Estimated

Analytical / Estimated

Ratio between analytical 2D density
divided by estimated density at

y = 0 cross section




¥ = 0 Slice of Ratio of Analytical / Estimated Density

— Analytical / Estimated

CIC
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Comparison between analytical 2D
density and estimated density at
y = 0 cross section
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¥ = 0 Slice of Analytical and Estimated Density

— Analytical
—  Estimated

Ratio between analytical 2D density
divided by estimated density at
y = 0 cross section

2D Density




Complex NFW (CNFW)

Our second synthetic dataset is a combination of several NFWs of varying cutoff
densities and asymmetric scaling factors.
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Analytical cutoff density 2e5 sampled particles Voronoi tessellation
contours




Analytical

CNFW 2D
Density Fields

Top row:
10243 3D density projected
to 10242 2D density field

and rendered in ParaView

Bottom row:
Ratio of analytical divided
by estimated density




Isocontours

Isocontours taken at a target density
value near the center of the CNFW
dataset are another comparison of
estimation methods. Upper right:
SPH. Lower right: CIC. Lower left:

TESS.

Voronoi >

I/ Tonn

I/ Tonn




Density Power Spectrum

CNFW density power spectrum is derived from FFT of density and shows amount of
density contained at different spatial frequencies. All methods do well at low frequencies,
but diverge from analytical in high frequency regions.
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Application: Gravitational Lensing




Lensing

One application of the density estimator is gravitational lensing for simulating
the distortion of sky surveys as light rays are refracted by galaxies en route to

the observer.

* Gravitational lensing =
light rays deflecting
when passing through a
gravitational potential

Properties of lensed
images a a function of
the gravitational
potential between object
and observer

Can model gravitational
potential as a 2D image
of density of dark matter
tracers

Gafaxy Cluster SDSS J1004+4112
HST ACS/WFC_

.Lenséd
Gala'xy
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Supernova Quasar
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Lensing for Validating Simulations with Sky Surveys
Far Field . Observed

\ Lens / y

Actual far field Actual near field density Distorted observations

T el

Simulated far field Simulated near field density Simulated distortion
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Voronoi tesellation
of halo particles
colored by cell

volume
Final output

2D density
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2D Dens

Particle data from
cosmology code from
halo ID 7445077095

HACC N-body




Summary
| described sampling a regular density field from a

distribution of particle positions using a Voronoi tessellation
as an intermediate data model.
Key ldeas
Automatically adaptive window size and shape
Comparison with CIC and SPH using synthetic and actual data

Voronoi tessellation and density estimation computed in
parallel on distributed-memory HPC machines

Application to gravitational lensing

Ongoing and Future Work

Linear Barycentric interpolation inside Voronoi cells through
Delaunay tessellation

Shared memory threading inside MPI tasks

Other applications such as 3D volume rendering




NERGY

Argonne'\

NATIONAL LABORATORY

LANL Invited Talk
3/4/14

“The purpose of computing is insight, not numbers.”
—Richard Hamming, 1962
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